NUMERICAL INTEGRATION RULES NEAR GAUSSIAN QUADRATURE⁺

BY

C. A. MICCHELLI AND T. J. RIVLIN

ABSTRACT

We call a numerical integration formula based on k nodes which is exact for polynomials of degree at most n an (n, k) formula. Gaussian quadrature is the unique $(2k - 1, k)$ formula. In this paper we give a complete description of all $(2k - 3, k)$ formulas, including a characterization of those having all positive weights.

1. Introduction

Given a positive integer k and a weight function $\rho(t)$ defined on $I: [-1, 1]$, if there exist nodes $x: (x_1, \dots, x_k), -1 \le x_1 < x_2 < \dots < x_k \le 1$ and weights $w:(w_1, \dots, w_k), w_i \neq 0, i = 1, \dots, k$, such that

(1)
$$
\int_{-1}^{1} p(t) \rho(t) dt = \sum_{i=1}^{k} w_i p(x_i),
$$

for all $p \in P_n$ (where P_n is the set of polynomials of degree at most n) we say that (1) is an (n, k) quadrature formula (qf) based on x with weights w. Every formula (1) for $n \geq k-1$ is interpolatory in the sense that if $L_k(f) \in P_{k-1}$ satisfies $L_i(f; x_i) = f(x_i), i = 1, \dots, k$

then

$$
\sum_{i=1}^k w_i p(x_i) = \int_{-1}^1 L_k(p;t) \rho(t) dt.
$$

Since

$$
L_k(p;t) = \sum_{i=1}^k p(x_i)l_i(x),
$$

t Dedicated to Professor I. J. Schoenberg on the occasion of his seventieth birthday. Received June 25, 1973

and $n \geq k-1$, w and x are related by

(2)
$$
w_i = \int_{-1}^{1} l_i(t) \rho(t) dt.
$$

There is a unique $(k - 1, k)$ qf based on any x provided that the w_i determined by (2) are not equal to zero. At the other extreme, there is no (n, k) qf for $n \ge 2k$ and there is exactly one $(2k-1, k)$ qf, based on the k zeros of p_k , the orthogonal polynomial of degree k with respect to ρ . This is called Gaussian quadrature. If w is strictly positive, that is, $w_i > 0$, $i = 1, \dots, k$, we say that (1) is a positive (n, k) qf. Our main objective is to obtain a detailed description of $(2k-3, k)$ qf for $k \ge 2$. Since every (n, k) qf is an (m, k) qf for $m < n$, we will easily be able to deduce a description of $(2k-2, k)$ qf.

The orthogonal polynomials $\{p_j\}$ with respect to ρ are important tools for us. We suppose them normalized so that the leading coefficient of each p_i is 1. The orthogonal polynomials satisfy the three term recurrence formula

$$
p_j(t) = (t - u_j)p_{j-1}(t) - v_j p_{j-2}(t), \ j = 2, 3, \cdots
$$

where

$$
p_0 = 1, \ p_1(t) = t - u_1
$$

$$
u_j = \left(\int_{-1}^1 t p_{j-1}^2(t) \rho(t) dt \right) / \left(\int_{-1}^1 p_{j-1}^2(t) \rho(t) dt \right), j = 1, 2, \cdots,
$$

and

$$
v_j = \left(\int_{-1}^1 p_{j-1}^2(t)\rho(t)dt\right) / \left(\int_{-1}^1 p_{j-2}^2(t)\rho(t)dt\right), j = 2, 3, \cdots.
$$

Note that $v_j > 0$ and $|u_j| < 1$.

An easy argument, based on the orthogonality of the $\{p_j\}$, now shows that if (1) is an (n, k) qf (with $k-1 \leq n \leq 2k-1$) then x is the set of zeros of

(3)
$$
p_k(t) + c_1 p_{k-1}(t) + \cdots + c_{2k-1-n} p_{n+1-k}(t)
$$

for some choice of c_1, \dots, c_{2k-1-n} . Conversely, if x is the set of zeros of (3) (that is, (3) may be written as $\omega(t) = (t-x_1)\cdots(t-x_k)$ then

$$
\int_{-1}^1 \omega(t) p(t) \rho(t) dt = 0
$$

for all $p \in P_{n-k}$, and given any $q \in P_n$, $q = \omega p + r$, $p \in P_{n-k}$, $r \in P_{k-1}$ with $q(x_i) = r(x), i = 1, \dots, k$. Thus

$$
\int_{-1}^{1} q(t)\rho(t)dt = \int_{-1}^{1} r(t)\rho(t)dt = \int_{-1}^{1} L_{k}(q;t)\rho(t)dt
$$

$$
= \sum_{i=1}^{k} \left(\int_{-1}^{1} l_{i}(t)\rho(t)dt \right) q(x_{i}),
$$

and we have an (n, k) qf provided that

(4)
$$
\int_{-1}^{1} l_i(t)\rho(t)dt \neq 0, \ i = 1, \cdots, k.
$$

Our interest in $(2k-3, k)$ qf leads to a study of the zeros of

$$
q_k(t) = p_k(t) + c_1 p_{k-1}(t) + c_2 p_{k-2}(t),
$$

which we write, for future convenience, in the form

(5)
$$
q_k(t) = p_k(t) + (u_k - a)p_{k-1}(t) + (b + v_k)p_{k-2}(t).
$$

In Section 2 we study these zeros and give a complete description of $(2k-3, k)$ qf in terms of (a, b) . Section 3 is devoted to positive $(2k-3, k)$ qf and in Section 4 the qf for certain special weight functions are described in more detail.

2. The zeros of $q_k(t)$

In view of the three term recurrence formula we have

(6)
$$
q_k(t) = (t-a)p_{k-1}(t) + bp_{k-2}(t).
$$

If $\xi_1 < \xi_2 < \cdots < \xi_{k-1}$ are the zeros of p_{k-1} (they are in $(-1,1)$) then since $p_{k-2}(\xi_i) \neq 0$ we obviously have Lemma 1.

LEMMA. 1. *If* $b = 0$ then the zeros of q_k are ξ_1, \dots, ξ_{k-1} and a. Conversely, *if* $q_k(\xi_i) = 0$ for some *i* then $b = 0$.

As a consequence of Lemma 1, we make the following observation: if $b \neq 0$ every x which is a set of the zeros of (6) has a $(2k-3, k)$ qf based on it. That is, if $b \neq 0$ and $n = 2k-3$, (4) holds, for, suppose

$$
\int_{-1}^1 l_i(t)\rho(t)\,dt
$$

is zero for $i = m$ and not zero for $i = j$ (there must be such a j). Then

$$
0 = \int_{-1}^{1} p_{k-1}(t) \frac{q_k(t)}{(t - x_m)(t - x_j)} \rho(t) dt
$$

=
$$
\frac{q'_k(x_j)}{x_j - x_m} p_{k-1}(x_j) \int_{-1}^{1} l_j(t) \rho(t) dt,
$$

implies that $p_{k-1}(x_i) = 0$ and hence $b = 0$.

Conversely, if $b = 0$ and $a \in I$, $a \neq \xi_i$, $i = 1, \dots, k-1$ there is no $(2k-3, k)$ qf based on $\{a, \xi_1, \dots, \xi_{k-1}\}$ since if $\omega(t) = (t-a)p_{k-1}(t)$ and $l_i(t) = (p_{k-1}(t)/(\omega'(a)))$ then

$$
\int_{-1}^1 l_i(t)\rho(t)dt=0.
$$

We may write (6) in the form

$$
q_k(t) = p_{k-1}(t) \bigg((t-a) + b \frac{p_{k-2}(t)}{p_{k-1}(t)} \bigg) = p_{k-1}(t) r_k(t).
$$

According to Lemma 1, if $b \neq 0$ the zeros of q_k coincide with those of r_k . Szegö $[4, p. 47]$ showed that

(7)
$$
Q(t) = \frac{p_{k-2}(t)}{p_{k-1}(t)} = \sum_{j=1}^{k-1} \frac{\lambda_j}{t - \xi_j}; \lambda_j > 0, j = 1, \dots, k-1.
$$

Thus if I_0 denotes the interval $(-\infty, \xi_1), I_j: (\xi_j, \xi_{j+1}), j = 1, 2, \dots, k-2; I_{k-1}:$ (ξ_{k-1}, ∞) then

$$
Q'(t) < 0, \ t \in I_j, \ j = 0, \cdots, k-1,
$$

and $Q(t)$ is strictly monotone decreasing from ∞ to $-\infty$ in each I_j , $j = 1, \dots, k-2$. Hence we have Lemma 2.

LEMMA 2. (i) If $b \neq 0$ then q_k has at least one zero in each interval I_j , $j = 1, \dots, k-2$; and if it has more than one zero in I_m , say, then it has three (counting multiplicities) there, and exactly one zero in each of I_j , $j \neq m$.

(ii) If $b < 0$ then $r_k(t)$ is strictly monotone increasing from $-\infty$ to ∞ in *each* I_i , $j = 0, \dots, k-1$ *and so* $q_k(t)$ *has k distinct real zeros.*

Moreover we can state Theorem 1.

THEOREM 1. $q_k(t)$ has one zero in each of $[-1, \xi_1), (\xi_{k-1}, 1], I_j, j = 1, ...,$ $k-2$, *if*, and only *if*,

 $(b < 0$

and

(9)

$$
l_1(a,b) = Q(1)b - a + 1 \ge 0,
$$

$$
l_2(a,b) = Q(-1)b - a - 1 \le 0.
$$

PROOF. (i) If (9) holds then $r_k(-1) \leq 0$ and $r_k(1) \geq 0$, hence (8) implies that $q_k(t)$ has the required zeros, in view of Lemma 2(ii).

(ii) Suppose $q_k(t)$ has a zero in each of the intervals $[-1,\xi_1)$, $(\xi_{k-1},1]$, I_j , $j = 1, \dots, k-2$. Then $b \neq 0$ by Lemma 1. Suppose $b > 0$. Then we must have $r_k(-1) \ge 0$ and $r_k(1) \le 0$; these inequalities imply $2 + b(Q(1) - Q(-1)) \le 0$, which, since $Q(1) > 0$ and $Q(-1) < 0$, is impossible. Thus we must have $b < 0$, hence $r_k(-1) \le 0$ and $r_k(1) \ge 0$ must hold, and these inequalities are exactly (9).

REMARK. The linear inequalities (8) and (9) are consistent. The set of (a, b) satisfying them form a triangle with the point $(u_k, -v_k)$ within it. If we denote the set by Δ , then the perimeter of the triangle, excluding the closed segment BC , is, of course, in Δ (see Fig. 1). This remark follows from the observations that $Q(1) > 0$, $Q(-1) < 0$, $v_k > 0$ and, as a consequence of the three term recurrence formula, $1 - u_k - v_kQ(1) > 0$ and $-1 - u_k - v_kQ(-1) < 0$.

Theorem 1 and Lemma 2 give a complete description of the location of the zeros of q_k when $b < 0$. We turn next to a detailed study of the set of (a, b) with $b > 0$ for which $(2k-3, k)$ qf exist.

If $t_1, t_2 \in I_j$, $j = 0, \dots, k-1$ and $t_1 < t_2$, then t_1 and t_2 are zeros of $q_k(t)$ if, and only if, $r_k(t_1) = r_k(t_2) = 0$, which is equivalent to

(10)
$$
b = \frac{t_1 - t_2}{Q(t_2) - Q(t_1)}
$$

and

(11)
$$
a = \frac{t_2 Q(t_1) - t_1 Q(t_2)}{Q(t_1) - Q(t_2)} = t_1 + bQ(t_1).
$$

If $t_1 = t_2 = \tau$, we obtain

$$
(12) \t\t b = -\frac{1}{Q'(\tau)}
$$

and

$$
a = \tau - \frac{Q(\tau)}{Q'(\tau)}.
$$

Suppose now that $-1 \leq t_1 < t_2 < \xi_1$. In view of Lemma 2 there is a $(2k-3, k)$ qf corresponding to each pair (t_1, t_2) . Fig. 2 depicts $Q(t)$ in $[-1, \xi_1)$. If (t_1, t_2) gives b by (10) then the same b arises from infinitely many (t_1, t_2) , namely, the abscissas of the intersections of all lines of slope $-1/b$ with $Q(t)$. Let $\tau(b)$ denote the unique value of t such that (12) holds. Then b arises from (t_1, t_2) with $-1 \leq t_1 < \tau$, and b satisfies

(13)
$$
0 < b < -\frac{1}{Q'(\tau)}.
$$

To each b satisfying (13) there corresponds the a interval

(14)
$$
-1 + bQ(-1) \leq a < \tau + bQ(\tau) = \tau - \frac{Q(\tau)}{Q'(-1)}.
$$

Thus (a, b) lies in the set S_0 delimited by the inequalities (13) and (14) (see Fig. 3). The curved boundary of S_0 is given by

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L})
$$

(15)
$$
a(\tau) = \tau - \frac{Q(\tau)}{Q'(\tau)},
$$

(16)
$$
b(\tau) = -\frac{1}{Q'(\tau)}, \text{ for } -1 \leq \tau < \xi_1.
$$

Thus

$$
\frac{db}{da} = \frac{1}{Q}
$$

and

(18)
$$
\frac{d^2b}{da^2} = -\frac{(Q')^3}{Q^3Q''},
$$

which provide the qualitative features depicted in Fig. 3.

It is clear that each $(a, b) \in S_0$ leads to a pair of zeros (t_1, t_2) , hence there is a one-to-one correspondence between S_0 and $(2k-3, k)$ qf having two nodes in $[-1,\xi_1)$.

Fix j, $1 \le j \le k-2$ and consider the interval I_j . $Q'(t) < 0$ and $Q''(t)$ is strictly monotone decreasing from ∞ to $-\infty$ there. Let τ_j be the unique zero of Q'' in I_j , so that $Q'(t)$ takes on once all values in $(-\infty, Q'(\tau_j)]$ in each of the intervals $({\xi}_j, \tau_j]$ and $[\tau_j, {\xi}_{j+1})$. Every line which intersects $Q(t)$ in three distinct points of I_j must have slope $-1/b$ where

$$
(19) \t\t\t 0 < b < -\frac{1}{Q'(\tau_j)}.
$$

There are two lines of given slope $-1/b$, with b satisfying (19), which are tangent to $Q(t)$, one at $t = \tau(b)$, the other at $t = \bar{\tau}(b)$, and

$$
\xi_j < \underline{\tau} < \tau_j; \ \tau_j < \overline{\tau} < \xi_{j+1} \, .
$$

Every line between these two tangents meets $Q(t)$ in three distinct points, with abscissas $t_1 < t_2 < t_3$. Thus to each b satisfying (19) there corresponds the a interval

$$
(20) \qquad \qquad \underline{\tau} + bQ(\underline{\tau}) < a < \overline{\tau} + bQ(\overline{\tau})
$$

in view of (11). Hence (a, b) lies in the set S_j defined by the inequalities (19) and (20). The curved boundary of S_j is given once again by the parametric equations (15) and (16) with $\xi_j \leq \tau \leq \xi_{j+1}$. It is clear that b attains its maximum at τ_j and, in view of (17), the boundary of S_j has a vertical tangent at γ_i , the zero of $Q(t)$ (hence of $p_{k-2}(t)$) in I_j . Depending on the relative sizes of τ_j and γ_j , S_j is either of type A, type B, or type C, as depicted in Fig. 4. Clearly each $(a, b) \in S_j$ yields a $(2k-3, k)$ qf with three nodes in I_j .

The description of S_{k-1} , the set of (a, b) corresponding to $(2k-3, k)$ qf with two nodes in $(\zeta_{k-1}, 1]$, resembles that of S_0 and we omit it.

This completes our description of all possible $(2k-3, k)$ qf. They correspond to all (a, b) which lie in Δ and a spiky crown atop Δ . We shall discuss these domains further when we examine some special weight functions in Section 4.

3. Positive $(2k - 3, k)$ quadrature **formulae**

We turn next to a consideration of positive $(2k-3, k)$ qf.

THEOREM 2. A (2k-3, k) *qf is positive if, and only if, it is based on nodes which are the zeros of* $q_k(t)$ *with a, b satisfying (8) and (9), that is, it corresponds to some* $(a, b) \in \Delta$.

PROOF. (i) Suppose (1) is a positive $(2k-3, k)$ qf. Then

(21)
$$
\sum_{i=1}^{k} w_i p_{k-1}(x_i) q(x_i) = 0
$$

for any $q \in P_{k-2}$. Since $w_i > 0$, $i = 1, \dots, k$, this implies that the sequence $p_{k-1}(x_i)$, $i = 1, \dots, k$ alternates in sign and thus $-1 \le x_1 < \xi_1 < x_2 < \dots$ $\langle \xi_{k-1} \times x_k \leq 1$. For, if $1 \leq j \leq k-1$, choose $q = q_j$ so that $q_j(x_i) = 0$, $i = 1, \dots, k$; $i \neq j$, $j + 1$ and $q_j(x_j) = 1$. Then $q_j(x_{j+1}) > 0$ and (21) becomes

$$
w_j p_{k-1}(x_j) + w_{j+1} p_{k-1}(x_{j+1}) q_j(x_{j+1}) = 0,
$$

which implies that either $p_{k-1}(x_i)p_{k-1}(x_{i+1}) < 0$ or $p_{k-1}(x_i) = p_{k-1}(x_{i+1}) = 0$. But if the latter case holds, then, if $m \neq j$, $j + 1$ and we put $q = \bar{q}_m$ in (21), where $\bar{q}_m(x_m) = 1$ and $\bar{q}_m(x_i) = 0$, for $i \neq m, j, j + 1$, we obtain $p_{k-1}(x_m) = 0$, and hence x does not consist of distinct nodes.

Theorem 1 now implies that $(a, b) \in \Delta$.

(ii) Suppose x is a set of zeros of $q_k(t)$ with $(a, b) \in \Delta$. The nodes $x_i(a, b)$ satisfy

$$
-1 \le x_1(a, b) < \xi_1 < \dots < \xi_{k-1} < x_k(a, b) \le 1
$$

according to Theorem 1 and are continuous functions of (a, b) . Thus, the $w_i(a, b)$ given by (2) are continuous functions of (a, b) for $(a, b) \in \Delta$. In view of the remarks following Lemma 1, $w_i(a, b) \neq 0$ for any i and $(a, b) \in \Delta$. Thus each $w_i(a, b)$ is of one sign throughout Δ , and since each $w_i(u_k, -v_k)$ is known to be positive (these being the weights for Gaussian quadrature), the sign is plus. This proves the theorem.

We can now summarize our description of $(2k-3, k)$ qf. They correspond in a one-to-one fashion to points (a, b) of $\Delta \cup S_0 \cup \cdots \cup S_{k-1}$. The positive qf correspond to Δ and all qf corresponding to $\cup S_k$, therefore, have one negative weight. The closed line segment of $b = 0$, which is a common boundary of Δ and $\cup S_k$, corresponds to the (2k - 3, k-1) Gaussian formula. All other boundary points of \cup *S_k* correspond to a quadrature formula exact for P_{2k-3} , involving $k-1$ function evaluations and a derivative evaluation at one of the $k-1$ nodes. The cusp points correspond to quadrature formula, exact for P_{2k-3} , involving $k-2$ function evaluations and evaluations of the first two derivatives at one of the nodes. The $(2k-3, k)$ Gaussian formula corresponds to the point $(u_k, -v_k)$ of Δ , and all $(2k-2, k)$ qf correspond to the closed horizontal line segment passing through $(u_k, -v_k)$ and lying in Δ . Hence all $(2k-2, k)$ qf are positive.

Let us turn next to an examination of the nodes of positive $(2k-3, k)$ qf. One might be led to believe, by counting parameters in (1), that any two nodes can be assigned arbitrarily, subject only to the condition that the zeros of p_{k-1} interlace the set of nodes. We wish to show that this is not the case.

Suppose (8) and (9) hold and $t₁, t₂$ are the two arbitrary nodes. The choice of nodes $t_1 = -1$, $t_2 = 1$ is clearly possible. It corresponds to the lowest point of Δ , and the nodes of the quadrature formula are the abscissas of the points of intersection of the line joining $(-1, Q(-1))$ and $(1, Q(1))$ with $Q(t)$. (See Fig. 5.) Call these nodes λ_j , where $\lambda_j \in I_j$, $j = 1, \dots, k-2$ and $\lambda_0 = -1$,

 $\lambda_{k-1} = 1$. Suppose next that $t_1 = -1$ and $t_2 = t \in I_j$, $(j = 1, ..., k-1)$ with $\xi_i < t \leq \lambda_i$. The complete set of nodes is $\lambda_i(t)$, $i = 0, \dots, k-1$ where $\lambda_0(t) = -1$, $\lambda_i(t) = t$ and $\xi_i < \lambda_i(t) \leq \lambda_i$, $i = 1, \dots, k-1$. Similarly if $t_1 = t \in I_j$, $t_2 = 1$ and $\lambda_i \leq t < \xi_{i+1}$ we obtain a quadrature formula with nodes $\bar{\lambda}_i(t)$, $i = 0, \dots k-1$, satisfying $\lambda_i \leq \overline{\lambda_i(t)} < \xi_{i+1}$ for $i = 0, \dots, k-2$ and $\overline{\lambda_{k-1}(t)} = 1$. Now if

$$
\xi_k < t_1 < \lambda_j
$$

all quadrature formulae having t_1 as a node have nodes at the abscissas of the intersection with Q of all lines through $(t_1, Q(t_1))$, say the point P in Fig. 5, which have slopes at least as great as that of \overline{AC} . Therefore, t_1 can be coupled only with $t_2 \in I_i$ satisfying

$$
\xi_i < t_2 \leq \underline{\lambda}_i(t_1) \text{ for } i > j, \text{ and}
$$
\n
$$
\underline{\lambda}_i(t_1) \leq t_2 < \xi_{i+1} \text{ for } i < j.
$$

Similarly, if

 $\lambda_i \leq t_1 < \xi_{i+1},$

 t_1 can be coupled only with $t_2 \in I_i$ satisfying

$$
\xi_i < t_2 \leq \bar{\lambda}_i(t_1) \text{ for } i > j, \text{ and}
$$
\n
$$
\bar{\lambda}_i(t_1) \leq t_2 < \xi_{i+1} \text{ for } i < j.
$$

In particular no t_1 satisfying $\xi_j < t_1 \leq \lambda_j$ can be coupled with a t_2 satisfying $\lambda_i < t_2 < \xi_{i+1}$ if $i > j$. Thus certain pairings are prohibited, and we cannot assign two nodes arbitrarily.

4. Some special weight **functions**

The shape of the boundary curves of the spiky regions, S_k , is governed by the relative positions of γ_j and τ_j , the zeros of Q and Q" respectively in the interval I_j . For some special choices of the weight function $\rho(t)$, we shall determine these relative positions.

First we observe that if $\rho(t)$ is an even function then $u_k = 0$ and $\Delta \cup S_0 \cup S_1 \cup \cdots \cup S_{k-1}$ is symmetric with respect to the b-axis. Suppose now that

$$
\rho(t) = (1-t^2)^{\lambda - \frac{1}{2}}, \ \lambda > -\frac{1}{2}
$$

so that the orthogonal polynomials, p_k , are the ultraspherical polynomials which satisfy

$$
np_n = 2(n + \lambda - 1)t p_{n-1} - (n + 2\lambda - 2)p_{n-2}, \quad n = 2, 3, \cdots,
$$

$$
(1 - t^2)p'_n = (n + 2\lambda)t p_n - (n + 1)p_{n+1},
$$

and

where

 $(1-t^2)p'' = (2\lambda + 1)tp'_n - n(n+2\lambda)p_n$

refer to Szegö [4, pp. 81, 83, 84]. Thus if $Q(t) = p_{k-2}(t)/p_{k-1}(t)$, application of the above equalities in a judicious manner yields

$$
(1 - t2)Q''(t) = AtQ'(t) + BQ'(t)Q(t) + CQ(t)
$$

$$
A = (4k + 4\lambda - 3)(3 - 2\lambda - 2k),
$$

$$
B = -2(k + 2\lambda - 2)(3 - 2\lambda - 2k),
$$

$$
C = 2k + 2\lambda - 3.
$$

Since $\lambda > -\frac{1}{2}$ and $k \ge 2$ we obtain $A < 0$, and hence since $Q'(\gamma_i) < 0$

$$
\operatorname{sgn} Q''(\gamma_i) = \operatorname{sgn} \gamma_i.
$$

Thus if $\gamma_i < 0$ we have $\tau_j < \gamma_j$ and we have a type B spike (see Fig. 4), while if $\gamma_i = 0$ (which can occur only when i is odd) we see that $\tau_j = 0$ and we obtain a type C spike. The rest of the configuration follows from symmetry. In Fig. 6 we depict $\Delta \cup S_0 \cup S_1 \cup \cdots \cup S_4$ as computed in the Chebyshev case, that is $\rho(t) = (1 - t^2)^{-\frac{1}{2}}$.

We conclude by mentioning the previous literature on the topic of this paper known to us. Fejer [1] showed that in the Legendre case $(\rho(t) \equiv 1)$ if $q_k(t) = p_k(t) + c_1 p_{k-1}(t) + c_2 p_{k-2}(t)$ has *n* real distinct zeros in *I* and $c_2 \leq 0$ then the weights in the quadrature formula based on these zeros are positive. (In a footnote he indicates that he intends to investigate the polynomials $q_k(t)$ further elsewhere, but examination of his collected works [2] does not reveal such an investigation). Our results show that the condition $c_2 \leq 0$ can be relaxed somewhat.

P. Rabinowitz brought to our attention the work of Soulé $\lceil 3 \rceil$ in which $(2k-3, k)$ qf are used as a control on Gaussian quadrature.

Fig. 6

REFERENCES

1. L. Fejér, *Mechanische Quadraturen mit positiven Cotesschen Zahlen*, Math. Z. 37 (1933), 287-309.

2. L. Fejér, *Gesammelte Arbeiten*, 2 vols., Birkhauser, Basel, 1970.

3. J. L. Soul6, *Formules de quadrature contr61de,* Rapport No. 23, Dep't. de Calcul Electronique, Comm. A L'Energie Atomique, 1966.

4. G. Szegö, *Orthogonal polynomials*, Amer. Math. Soc., New York, 1959.

IBM RESEARCH CENTER

YORKTOWN HEIGHTS, NEW YORK, U.S.A.