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ABSTRACT 

We call a numerical integration formula based on k nodes which is exact for 
polynomials of degree at most n an (n, k) formula. Gaussian quadrature is 
the unique (2k -- 1, k) formula. In this paper we give a complete description 
of all (2k -- 3, k) formulas, including a characterization of those having all 
positive weights. 

1. Introduction 

Given a positive integer k and a weight function p(t) defined on I :  [ - 1 ,  1 ] ,  

if there exist nodes x :  (X l , ' " ,Xk) ,  --1 --< Xl <X2 < "'" <Xk _--< 1 and weights 

w:(w~,. . . ,wk),  w~ # 0 ,  i = 1 , . . . , k ,  such that 

(1) p(t)p(t)dt = 2 w,p(x~), 
1 i=l 

for  all p e P ,  (where P,  is the set o f  polynomials o f  degree at most  n) we say that 

(1) is an (n, k) quadrature  formula (qf) based on x with weights w. Every formula 

(1) for n _-> k - 1  is interpolatory in the sense that if L k ( f ) ~ P k - 1  satisfies 

Lk(f; X~) = f ( x t ) ,  i = 1,. . . ,  k 

then 

Since 

k f f l L  k ~, wjp(x~) = (p; t)p(t)dt. 
1=1 

k 

L~(p; t) = ~, p(xi)li(x), 
1=1 

t Dedicated to Professor I. J. Schoenberg on the occasion of his seventieth birthday. 
Received June 25, 1973 

287 



288 C . A .  MICCHELLI AND T. J. RIVLIN Israel J. Math., 

and n > k - l ,  w and x are related by 

(2) wi = 11 li(t)p(t )dt .  
d -  1 

There is a unique ( k -  1, k) qf based on any x provided that the wi determined 

by (2) are not equal to zero. At the other extreme, there is no (n, k) qf for n > 2k 

and there is exactly one (2k-1 ,  k) qf, based on the k zeros of PR, the orthogonal 

polynomial of degree k with respect to p.  This is called Gaussian quadrature. 

If w is strictly positive, that is, w, > 0, i = 1, . . , ,k ,  we say that (1) is a positive 

(n, k) qf. Our main objective is to obtain a detailed description of (2k -3 ,  k) qf 

for k > 2, Since every (n, k) qf is an (m, k) qf for m < n, we will easily be able 

to deduce a description of (2k-2 ,  k) qf. 

The orthogonal polynomials (p j} with respect to p are important tools for us. 

We suppose them normalized so that the leading coefficient of each pj is 1. The 

orthogonal polynomials satisfy the three term recurrence formula 

pj(t) = ( t -u j )p .  i_ 1 ( 0 -  vjpj-2(t), j = 2, 3,... 

where 

and 

Po = 1, Pl ( t )= t -  ul 

P2- ~(t)p(t)dt , j = 1, 2, . . . ,  

Note that vj > 0 and [u2[ < 1. 

An easy argument, based on the orthogonality of the {p j}, now shows that if 

(1) is an (n,k) qf (with k - 1  < n < 2 k - l )  then x is the set of zeros of 

(3) Pk(t) + r  -{- "'" + C2k_l_nPn+l_k(t  ) 

for some choice of cl, "", C2k-1-." Conversely, if x is the set of zeros of (3) (that 

is, (3) may be written as co(t) = ( t - x1 ) . . .  ( t - -Xk))  then 

f~  co(t) p(t) p(t) dt = 0 
1 

for all pEPn_k, and given any q~Pn,  q - - c o p + r ,  pEPn_k, rEPk_ 1 with 

q(xi) = r(x), i -- 1, . . . ,k.  Thus 
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q(t)p(t)dt = r(t)p(t)dt = Lk(q; t)p(t)dt 
1 --1 1 

= 2 (t)p(t)dt q(x) ,  
l = l  

and we have an (n,k) qf provided that 

f_' (4) li(t)O(t)dt r 0, i = 1, ..., k.  
1 

Our interest in ( 2 k -  3, k) qf leads to a study of the zeros of 

qk(t) = Pk(t) + clPk-1(0 + C2PR-2(t), 

which we write, for future convenience, in the form 

(5) qk(t) = p~(t) + (uk - a)Pk-1(0 + (b + vk)pk-2(t). 

In Section 2 we study these zeros and give a complete description of ( 2 k - 3 ,  k) 

qf in terms of (a, b). Section 3 is devoted to positive ( 2 k -  3, k) qf and in Section 4 

the qf for certain special weight functions are described in more detail. 

2. The zeros ofqk(t ) 

In view of  the three term recurrence formula we have 

(6) qk(t) = (t--a)pk- ~(t) + bPk-2(t). 

If  ~1 < ~z < "'" < ~k-1 are the zeros of  Pk-~ (they are in ( - 1 , 1 ) )  then since 

Pk-2(~i) ~ 0 we obviously have Lemrna I. 

LEMMA. 1. l f  b = 0 then the zeros of q k are ~t,"' ,~k-1 and a. Conversely, 
if q~(~z) = 0 for some i then b = O. 

As a consequence of Lemma i, we make the following observation: if b ~ 0 

every x which is a set of the zeros of (6) has a ( 2 k -  3, k) qf based on it. That is, if 

b ~ 0 and n = 2 k - 3 ,  (4) holds, for, suppose 

f ~l li(t)p(t) dt 

is zero for i = m and not zero for i = j (there must be such a j ) .  Then 

0 =  f lPk_l(t) (t__q~k()~--f__xjjP(t)dt 

q'k(XJ) Pk- l(xi) f t  Ij(t)p(t) dt, 1 

X j  - -  Xm , ] -  1 
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implies that pg_ t ( x j )  = 0 and hence b = 0. 

Conversely, if b = 0 and a ~ l ,  a ~ ~ ,  i = 1 , . . . , k - 1  there is no (2k -3 ,  k) 

qf based on {a, ~I, "", ~k- l } since if o~(t) = (t -- a)Pk- t(t) and li(t) = (Pk- t(t)/(to'(a)) 

then 

f ]  l~(t)p(t)dt = O. 
1 

We may write (6) in the form 

b PR- 2(0 qk(t) = p,_t( t ) ( ( t - -a)  + ~ ) =  pk-l(t)rk(t). 

According to Lemma 1, if b # 0 the zeros of qk coincide with those of r k . Szeg~ 

[4, p. 47] showed that 

k -  1 2 j  . 
Pk-2(t) -- E , 2 j > O , j =  1 , . . . , k - 1 .  

(7) Q ( t ) -  pk_l(t ) j=l t -- ~j 

Thus if Io denotes the interval ( - o o , ~ l ) , I j :  (~j,~j+;), j = 1 , 2 , . . . , k - 2 ;  Ik_l: 

(~k-l, o0) then 

Q'(t) < 0 ,  t ~ I j ,  j = 0 , . . - , k - I ,  

and Q(t) is strictly monotone decreasing from oo to - oo in each I j ,  j = 1,-.., k -  2. 

Hence we have Lemma 2. 

LEMMA 2. (i) I f  b ~ 0 then qk has at least one zero in each interval I j ,  

j = 1 , . . . , k - 2 ;  and if it has more than one zero in Ira, say, then it has three 

(counting multiplicities) there, and exactly one zero in each of I j ,  j ~ m. 

( i i ) / f  b < 0 then rg(t) is strictly monotone increasing from - o o  to oo in 

each I j ,  j = O, ..., k - 1  and so qk(t) has k distinct real zeros. 

Moreover we can state Theorem 1. 

THEOREM 1. qk(t) has one zero in each of [ - I ,  ~l), (~k-1, 1], Ij, j = 1, '" ,  

k - 2 ,  if, and only if, 

b < 0  (s) 

and 

ll(a, b) = Q(1)b-a  + 1 > 0, 
(9) 

12(a,b) = Q ( - 1 ) b - a -  l _-_ O. 

PROOF. (i) If  (9) holds then rk(-- 1) --<_ 0 and rk(1) _--> 0, hence (8) implies that 
qk(t) has the required zeros, in view of Lemma 2 (ii). 
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(ii) Suppose qk(t) has a zero in each of the intervals [ - 1 , ~ 1 )  , (~k-X,1], 

I j ,  j = 1 , ' " , k - 2 .  Then b ~ 0 by Lemma 1. Suppose b > 0. Then we must 

have rk(-- 1) > 0 and rk(1 ) < 0; these inequalities imply 2 + b(Q(1) - Q ( -  1)) < 0, 

which, since Q(1) > 0 and Q ( - 1 )  < 0, is impossible. Thus we must have b < 0, 

hence rk ( -1 )  < 0 and rk(1 ) > 0 must hold, and these inequalities are exactly (9). 

REMARK. The linear inequalities (8) and (9) are consistent. The set of (a, b) 

satisfying them form a triangle with the point (UR, --Vk) within it. If  we denote 

the set by A, then the perimeter of  the triangle, excluding the closed segment 

B C ,  is, of  course, in A (see Fig. 1). This remark follows from the observations 

that Q(1) > 0,  Q ( -  1) < 0, Vk > 0 and, as a consequence of the three term re- 

currence formula, 1 - u k - VkQ(1) > 0 and - 1 - u k - v ~ Q ( -  1) < 0. 

A 2 " O  

-1 
B 

A 

�9 v k) 

/ 

.~1"0 

Fig.  1 

Theorem 1 and Lemma 2 give a complete description of  the location of the zeros 

of  qk when b < 0. We turn next to a detailed study of the set of (a, b) with b > 0 

for which ( 2 k - 3 ,  k) qf exist. 

I f  t l ,  t 2 e l j , j  = 0 , . . . , k - 1  and t I < t2, then t I and tz are zeros of  q~(t) if, 

and only if, rk(tx) = rk(t2) = 0,  which is equivalent to 

(10) 

and 

b = 
t I - -  t 2 

Q(t2) - Q(t l )  

t2Q(t l)  - t lQ(t2)  = t I + bQ( t l ) .  
( 1 1 )  a = Q ( t l  ) _ Q(t2 ) 
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If t t = t 2 = "C, we obtain 

(12) 

and 

b = Q'(r) 

Q(O 
a - - ' r  

Q'(T)" 

O(t] 

I I 
I 

I t I 

Fig. 2 

Suppose now that - 1  _< tz < t2 < ~ 1 .  In view of Lemma 2 there is a (2/6-3, k) 

qf corresponding to each pair (tl, t2). Fig. 2 depicts Q(t) in [ -  1, Ca). If (t 1, t2) 

gives b by (10) then the same b arises from infinitely many (tl, t2), namely, the 

abscissas of the intersections of all lines of slope -1 /b  with Q(t). Let z(b) denote 

the unique value of t such that (12) holds. Then b arises from (tl, t2) with 

- 1  < tt < ~, and b satisfies 

1 
(13) 0 < b < Q '(~) 

To each b satisfying (13) there corresponds the a interval 

(14) - l  + b Q ( - 1 )  _-< a < ~ + bQ(O = 
Q(O 

(2'(-1) 

Thus (a, b) lies in the set So delimited by the inequalities (13) and (14) (see Fig. 3). 

The curved boundary of So is given by 
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, I v/////'~ _ 

A 

Fig. 3 

/ 

(15) a(z) = z - Q(z--~-) Q'(O' 

293 

1 
(16) b(z) = Q,( , ) ,  for - 1  < z < ~l.  

Thus 

(17) 
db 1 
da Q 

and 

(18) d2b (Q,)a 
da 2 Q3Q,,, 

which provide the qualitative features depicted in Fig. 3. 

It is clear that each (a, b)e So leads to a pair of zeros (tl, t2), hence there is 

a one-to-one correspondence between S O and (2k-3 ,  k) qf having two nodes 

in [ - 1 , 4 1 ) .  

Fix j ,  1 < j < k - 2  and consider the interval I ; .  Q'(t) < 0 and Q"(t) is strictly 

monotone decreasing from oo to - ao there. Let zi be the unique zero of Q" 

in I j ,  so that Q'(t) takes on once all values in ( -  oo, Q'(z;)] in each of the inter- 

vals (~j, ~;] and [zj, ~j+ 1). Every line which intersects Q(t) in three distinct points 

of Ij  must have slope - 1 / b  where 
1 

(19) 0 < b < - Q,(zj-----~. 

There are two lines of given slope - 1 / b ,  with b satisfying (19), which are tangent 

to Q(t), one at t = z_(b), the other at t = ~(b), and 
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Every line between these two tangents meets Q(t) in three distinct points, with 

abscissas t I < t2 < t3. Thus to each b satisfying (19) there corresponds the a 

interval 

(20) z. + bQ~)  < a < ~ + bQ(~) 

in view of (11). Hence (a, b) lies in the set Sj defined by the inequalities (19) and 

(20). The curved boundary of Sj is given once again by the parametric equations 

(15) and (16) with ~i -< z < ~j+l. It is clear that b attains its maximum at zj 

and, in view of (17), the boundary of Sj has a vertical tangent at ~y, the zero 

of Q(t) (hence of Pk-2(t)) in Ij .  Depending on the relative sizes of zj and ~,j, S~ 

is either of type A, type B, or type C, as depicted in Fig. 4. Clearly each (a, b) e Sj 

yields a (2k -  3, k) qf with three nodes in Ij .  

TYPE A (yj  <~'j) TYPE 13 (Tj >r | )  

S i 

TYPEC (y , ' r  z) 
J .I 

Fig. 4 

The description of Sk_l, the set of (a, b) corresponding to (2k-3,  k) qf with 

two nodes in (~k-1, 1], resembles that of S o and we omit it. 

This completes our description of all possible (2k-3,  k) qf. They correspond 

to all (a, b) which lie in A and a spiky crown atop A. We shall discuss these domains 

further when we examine some special weight functions in Section 4. 

3. Posit ive (2k - 3, k) quadrature formulae 

We turn next to a consideration of positive (2k-3,  k) qf. 

THEOREM 2. A (2k-3,  k) q f  is positive if, and only if, it is based on nodes 

which are the zeros of qk(t ) with a, b satisfying (8) and (9), that is, it corresponds 

to some (a, b) ~ A.  

PROOF. (i) Suppose (1) is a positive ( 2 k - 3 ,  k) qf. Then 
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k 
(21) I; w~vk-l(xt)q(xt) = 0 

i=1 

for any q e P k _  2. Since w i > 0 ,  i =  1 , . . . , k ,  this implies that the sequence 

Pk-I(X~), i = 1 , ' " , k  alternates in sign and thus - 1 < xl <41 < x 2 < " '  

< ~ k - I < X R <  1. For, if 1 N j < k - 1 ,  choose q = q j  so that q j ( x i ) = O ,  

i = 1 , . . . , k ;  i r j ,  j + 1 and q~(xj) = 1. Then qj(x~+l)> 0 and (21) becomes 

wjp k- I(Xj) ")1- W j+ lPk- l (Xj+ 1)q j(xj+ 1) = 0 ,  

which implies that either Pk- l(xj)Pk- t(Xj+ 1) < 0 or PR- 1(X j) = Pk- 1(X j .  1) = O. 

But if the latter case holds, then, if m # j ,  j + 1 and we put q = q,, in (21), where 

?l,,,( x,,,) = 1 and Yl,,,(xi) = 0, for i # m , j , j  + 1, we obtain pk_l(x,,,) = 0, and 

hence x does not consist of distinct nodes. 

Theorem 1 now implies that (a, b)e A. 

(ii) Suppose x is a set of zeros of qk(O with (a, b)E A. The nodes xi(a, b) 

satisfy 

- 1 < xl(a,  b) < 41 <""  < ~k-1 < Xk(a, b) <_ 1 

according to Theorem 1 and are continuous functions of (a, b). Thus, the w~(a, b) 

given by (2) are continuous functions of (a, b) for (a, b) e A. In view of the re- 

marks following Lemma 1, w~(a, b) r 0 for any i and (a, b) e A. Thus each w~(a, b) 

is of one sign throughout A, and since each W~(UR, --Ok) is known to be positive 

(these being the weights for Gaussian quadrature), the sign is plus. This proves 

the theorem. 

We can now summarize our description of ( 2 k -  3, k) qf. They correspond in a 

one-to-one fashion to points (a, b) of A k) So u ".. u Sk- 1. The positive qf cor- 

respond to A and all qf corresponding to k9 Sk, therefore, have one negative 

weight. The closed line segment of b = 0, which is a common boundary of A 

and k) Sk, corresponds to the ( 2 k -  3, k -  1) Gaussian formula. All other boundary 

points of td Sk correspond to a quadrature formula exact for P2k-3,  involving 

k - 1  function evaluations and a derivative evaluation at one of the k - 1  nodes. 

The cusp points correspond to quadrature formula, exact for P2k-3, involving 

k - 2  function evaluations and evaluations of the first two derivatives at one of 

the nodes. The (2k-3 ,  k) Gaussian formula corresponds to the point (uk,-vk) 

of A, and all (2k-2 ,  k) qf correspond to the closed horizontal line segment 

passing through (Uk, -- Vk) and lying in A. Hence all ( 2 k -  2, k) qf are positive. 
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Let us turn next to an examination of the nodes of positive (2k -3 ,  k) qf. 

One might be led to believe, by counting parameters in (1), that any two nodes 

can be assigned arbitrarily, subject only to the condition that the zeros of Pk- 

interlace the set of nodes. We wish to show that this is not the case. 

Suppose (8) and (9) hold and tx, t2 are the two arbitrary nodes. The choice 

of nodes t~ = - 1 ,  t 2 = 1 is clearly possible. It corresponds to the lowest point 

of A, and the nodes of the quadrature formula are the abscissas of the points 

of intersection of the line joining ( - 1 ,  Q(-1))  and (1, Q(1)) with Q(t). (See 

Fig. 5.) Call these nodes 2j, where 2 j~ l j ,  j = 1, . - . , k - 2  and 20 = - 1 ,  

-i \ 

I 

oO) 

i I 

k '4 I 
II I I  11 
I I  I \  i i  
i t  i \  l 
I I I , \  , \  

, I II 
I I It 
t l II 
i I II 

Fig. 5 

2k_ 1 = 1. Suppose next that t 1 = - 1 and t 2 = t E l j ,  ( j  = 1, . . . ,  k -  1) 

with Cj < t < 2j. The complete set of nodes is __2~(t), i =  0 , . . . , k - 1  where 

_20( 0 = --1,_2j(t) = t a n d  ~i < ~i(t) < 2i, i = 1 , - . . , k - 1 .  Similarly if tl = t~I j ,  
t 2 = 1 and 2j < t < ~j+l we obtain a quadrature formula with nodes ,~i(t), 

i = 0 , . . . k - I ,  satisfying 2 i < ~i(t) < r for i = 0 , . . . , k - 2  and ~k_~(t) = 1. 

Now if 

~k < t~ < 2s 

all quadrature formulae having tl as a node have nodes at the abscissas of the 

intersection with Q of all lines through (ti, Q(t~)), say the point P in Fig. 5, 

which have slopes at least as great as that of AC. Therefore, t~ can be coupled 

only with t2 e I i satisfying 
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Similarly, if 

~i < t2 <= 2_i(tl) for i > j ,  and 

_2i(tl) ~ t2 < ~i+1 for i < j .  

2j < t t < ~ j + l ,  

t~ can be coupled only with t z ~ I t satisfying 

~i < t2 < ~i(tl) for i > j ,  and 

~i(tl) < t2 < ~i+1 for i < j .  

In particular no t~ satisfying ~j < tl < 2j can be coupled with a tz satisfying 

hi < tz < r if i > j .  Thus certain pairings are prohibited, and we cannot 

assign two nodes arbitrarily. 

4. Some special weight functions 

The shape of the boundary curves of the spiky regions, Sk, is governed by the 

relative positions of 7j and z j ,  the zeros of Q and Q" respectively in the interval 

I j .  For some special choices of the weight function p(t) ,  we shall determine these 

relative positions. 

First we observe that if p(t) is an even function then Uk = 0 and 

A • S O W $1 U. . .  u S~_ 1 is symmetric with respect to the b-axis. Suppose now 

that 
p(t) = ( 1 -  t2) 'l-~, 2 > - �89 

so that the orthogonal polynomials, Pk, are the ultraspherical polynomials which 

satisfy 

npn = 2(n + 2-1) tpn_ 1 - (n + 22--2)pn_2, n = 2,3, ..., 

(1 - t2 )p~=  (n + 22)tpn - (n + 1)pn+l, 
and 

(1- tZ)p"  = (22 + 1)tp'~ - n(n + 22)p~, 

refer to Szeg/5 [4, pp. 81, 83, 84]. Thus if Q(t) = Pk_2(t)/pk_~(t), application of 

the above equalities in a judicious manner yields 

( 1 -  t2)Q"(t) = AtQ'( t )  + BQ'(t)Q(t) + CQ(t) 
where 

A = (4k + 42 - 3)(3 - 22 - 2k), 

B = - 2 ( k  + 2 2 - 2 ) ( 3  - 24  - 2 k ) ,  

C = 2k + 2 4 -  3. 

Since 2 > - � 8 9  and k _>__ 2 we obtain A < 0, and hence since Q'(~,j) < 0 
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sgn Q"(?j) = sgn ?j.  

Thus if yj < 0 we have zj < yj and we have a type B spike (see Fig. 4), while 

if yj = 0 (which can occur only when i is odd) we see that zj = 0 and we obtain 

a type C spike. The rest of the configuration follows from symmetry. In Fig. 6 

we depict A u So u S 1 u ... U s 4 as computed in the Chebyshev ease, that is 

p(t) = (1 - t 2 )  -~r . 

We conclude by mentioning the previous literature on the topic of this paper 

known to us. Fej~r [ I ]  showed that in the Legendre ease (p(t)- 1) if  

qk(t) =pk(t)+ ClPk_l(t)+ C:Pk_2(t ) has n real distinct zeros in I and 

c2 _-< 0 then the weights in the quadrature formula based on these zeros are posi- 

tive. (In a footnote he indicates that he intends to investigate the polynomials 

qk(t) further elsewhere, but examination of  his collected works [2] does not 

reveal such an investigation). Our results show that the condition c 2 __< 0 can 

be relaxed somewhat. 

P. Rabinowitz brought to our attention the work of Soul6 [3] in which 

( 2 k - 3 ,  k) qf are used as a control on Gaussian quadrature. 

§ 

tO.-O.~ 

Fig. 6 
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